
Requirement Engineering

Carsten Schmoll & Horst Rechner
Fraunhofer FOKUS - FOKUSforum - Best Practices

May 6., 2008

Requirement

A requirement is " a singular documented need of what a
particular product or service should be or do. It is most
commonly used in a formal sense in systems engineering or
software engineering. It is a statement that identifies a
necessary attribute, capability, characteristic, or quality of a
system in order for it to have value and utility to a user." --
[Wikipedia]

Sets of requirements are used as inputs into the
design, implementation and test stages of product
development.

What is Requirement Engineering?

Can be seen as transformation of the requirements of the
client for his product (e.g. software) to requirements for the
system development.

see [Man04] p.54

Requirements engineering includes the analysis and
management of the requirements using engineering
techniques.

Motivation

Why not just talk and start a cool
product?

"When we had lost our goal completely from sight,
we doubled our efforts." -- Mark Twain.

without an effective RE the developers will implement an
imcomplete or wrong solution for the customer
even with the most successful development techniques the
customer will not want what you made
extra work, hassles, complaints and other effects (loss of
money, future projects) will probably be the result
written facts are the key ("Worte sind Schall und Rauch")

Why Requirement Engineering?

Projects are defined by the following criteria:
clearly defined goal / result
limited in

money
human ressources
content

individual
high complexity
system boundaries

Dedicated requirement engineering helps to clearly define
those criteria in their variant for the project.

see also [Man04] p.22

Position of You in this Presentation

Let's assume the following position:
 you shall make a FOKUS customer happy
 you need to find out what shall be made
 you need to tell the developers what to do
 you need to make sure the customer says:
 "cool, that's what I wanted!" in the end

 we will focus on Software as the product here
 presented hints can also work vice versa
 basic rules also applicable to generic (non-IT) RE

The "Three" Sides of the Medal

 Engineering - what to do, how to do it

 Technical - what tools can support us

 Human - communication & politics

not all can be learned from books

only all three together make up very successful RE

Phases

Project Phases

(Requirement engineering
helps us here:)

Analysis
Requirement
Specification
Software Design
Implementation
Test
Maintenance

see [Man04] p.47

Which documents should be created in
every IT development project?
(Requirement engineering helps us here:)

Calculation of costs
Offer to the client
Assignment by the client
Requirement documentation
Design documentation
Testspecification
Instruction manual
Bill of delivery
Acceptance protocol

see [Man04] p.37

Phases of Requirements Engineering

These phases are part of the RE process:
(not necessarily one by one - they do overlap)

Elicitation - gathering the requirements from stakeholders
Analysis - checking for consistency and completeness
Documentation / Specification
Verification - making sure the specified requirements are
correct
Management - of the requirements.
This includes: Technical documentation, Change
Management
Make it stick! - present it to customer
Sync sync synchronize - as "close" as possible!

Kinds of Requirements

Functional
defines a the targeted behavior of the system
based on black-box view of the system
may also have pre- and post-conditions

Non-functional
= required constraints that "limit" the system design
categories:
 technical - e.g. hwrdaware, OS, devices (screen)
 interface - e.g. color, text size
 quality - security or performance (e.g. reaction time)
 other delivery "parts" - e.g. training, support
 legal requirements - e.g. insurance, standards

Requirements Elicitation Techniques

Creativity techniques
Brainstorming
Changing the perspective

Observation techniques
On-Site-Contractor
Apprenticing

Questioning techniques
Questionnaire
Interviews
On-Site-Customer

Retrospective techniques
System archaeology
Reuse

Requirements Elicitation 1

Make and circulate a questions document
only the right questions can yield useful answers
don't expect everyone to read it though before you read
it out aloud (see below)

Get together with the customer

if possible in any way do it in real life
get the right stakeholders "on board" (note them down)
be prepared about the project (learn about environment)
bring the right questions with you (above doc)
make current situation analysis there if not a new system
define clearly the roles of involved "partners" + show
them
also check whom you don't need to ask/satisfy

Requirements Elicitation 2

Organise a workshop
organiser brings the coffee ("feel good environment")
keep the number of stakeholders limited
be prepared for some level of conflicts among them too
limit the number of your contacts afterwards even more

Requirements Elicitation 3

the "deepness" (= detail level) depends on many things
level of the project (prototype, demo, 24/7 application)
size of the project
"closeness" of the customer
style of development (waterfall, V-Model, UP, XP)

less agile - more complete spec needed

prioritize during workshop into: MUST / MAY / OPTIONAL
tell participants which documents will be the output
beware of implicit requirements
("such buttons should of course have been big, round and
red")

Sophist Template

For interfaces:
“Component A shall / should provide component B the
ability to…”

For functionality:
“Component A shall / should / will be able to…”

shall - mandatory
should - desirable functionality
will - desirable functionality implemented in version Y

see [Soph08]

Analysis

Part of Workshop wrapup
back at home
summarize and cleanup answers and minutes taken
note unclear points, missing items and risks in separate
list or even separate document
put the many tiny details into annexes
circulate results openly, sync soon e.g. via telco
clearly state system boundaries and non-goals

boundaries will yield the system interfaces
if needed make a glossar (sparsingly, not: complete)
to fix the common terminology

Reviews of Requirement Documents

By the customer to avoid situations like
"You never asked us!"
"Why didn't you inform us in time?"
"We thought of this in a different way."

To cover all feature aspects
By the technical staff to avoid situations like

"That is how I thought it would be right."
"We never talked about this!"
"This is not possible with our system design."

To ensure that requirements and design are aligned
Goal: Distribution of the resposibility

see also [Man04] p.40

[Man04] p.37

Documentation of Requirements

Starting with an informal description
 doc/xls/odf templates available
 most companies have their own ones

Later convert to formal description
e.g. UML use cases, UML activity diagrams
database systems help a lot to keep track

for each requirement state the same attributes:
identifier, short text, long text, author, initial date,
latest change date, relation to other requirements,
priority, riscs, release, status, questions, source

allow the traceability of project progress - project mgmt.

Maintenance of Requirements

Important during the complete RE lifetime
reflect changes in your (office) documents
make stakeholders aware of the latest version
use simple to follow versioning scheme
make documents easily available (svn)

keeping track even more important during design and
implementation phase (trac)
many more tiny requirements visible here
practice shows that 3% of all requirements change each
month
keep list of open questions and to-be-clarified items

Tools

Tools in Use (mostly open source)

depends on the type, style and size of the project
whatever makes both parties happy will do
usually will be some office solution for the informal part

don't use systems like trac to communicate with your
customer
use trac to track project progress for the 500+ tiny
requirements which your developers crunch down one by
one (see lecture "Best Practices For Java Projects")

you will want to have "at hand":
text processor, spread sheet, graphics app or flow
charter, database, report generator, UML tools,
groupware, a file repository, a ticket system (trac), Wiki

Test Director

hre
Sticky Note
Screenshot had to be removed before public presentation.

Test Director - Requirement
Documentation

hre
Sticky Note
Screenshot had to be removed before public presentation.

Test Director - Test Planning
(Verification)

hre
Sticky Note
Screenshot had to be removed before public presentation.

Test Director - Testing (Verification)

hre
Sticky Note
Screenshot had to be removed before public presentation.

Test Director - Defect Management
(Verification)

hre
Sticky Note
Screenshot had to be removed before public presentation.

Tips & Summary

Tips & Summary

Document and Synchronize often among stakeholders!
Don't try full RE the first time in a time critical project!
Expect significant time overhead in your first try.

But it will pay out in the long run.
Don't expect immediate embrace by all stakeholders!

No single (open source) tool which integrates all aspects of
requirement engineering (Elicitation, Analysis,
Documentation / Specification, Verification and
Management) know to us.

Commercial Toolchain (Integrator Fraunhofer IESE)
The best tools are those which all involved people can
work fluently with! (even if it is only MS Excel)

Further reading (only German)

[Man04]
Pascal Mangold,
IT-Projektmanagement kompakt,
Spektrum Akademischer Verlag, 2. Auflage, 2004
[Rupp08]
Chris Rupp (SOPHIST GROUP),
Systemanalyse kompakt,
Spektrum Akademischer Verlag, 2. Auflage, 2008
[Rupp07]
Chris Rupp (SOPHIST GROUP),
Requirements-Engineering und Management
Hanser Verlag, 4. Auflage, 2007
[Soph08]
SOPHIST GROUP
http://www.sophist.de
[FUBSWT08]
Vorlesung Softwaretechnik FU Berlin
https://www.inf.fu-berlin.de/w/SE/VorlesungSoftwaretechnik

Thank you for your attention!

Participate! New topics? Ideas?

Best Development Practices Blog @ FOKUS
Software Engineering and beyond.

http://se-c2ccsrv.fokus.fraunhofer.de/wordpress/bestpractices/

Additional Infos

Abstract

Requirement Engineering deals with the gathering, analysis and
documentation of requirements, their environmental conditions and the
clients wishes for their product. There are many areas where requirement
engineering can be applied:
New projects, extension of existing projects / products, the setup of a new
laboratory, the development / extension of software, even the preparation of a
difficult dinner recipe for gourmets. A good project roadmap and its
execution with effective requirement acquisition can avoid
misunderstandings and excess work in later stages of the project and can lead
to a measurable, consistent result. Associated topics are communication
and documentation of planned and finished work items - which allows
continuous progress control.
In this talk we will give you practical advise on effective requirement acquisition,
take a close look at the necessary tools and show you common pit holes.

Kano-Model

cool features are much more fun than "open+save" support!

Requirement Elicitation Exercise
Turm 1:

Höhe an der Antennenspitze: 368m
Kugel für Gäste mit Dreh-Café
Aussichtsetage
Durchmesser des Fußes: 32 m
Durchmesser der Kugel: 40 m
Material: Stahlbeton
mehrere Aufzüge
Geschwindigkeit der Aufzüge: 6 m/s
Antennenanlage, Leistung bis 100kW
Stromversorgung für Kugel
Wasserversorgung für Kugel
WCs in der Kugel
Blitzschutzanlage
Treppe im Inneren des runden Turmes

Turm 2:

dreieckige Form (v.d.Seite)
Grundriss quadratisch
Stahlkonstruktion, genietet
Aussichtsetage mit Café
Höhe = 300m
mehrere Aufzüge, mit Zwischenhalt
am Café
Geschwindigkeit der Aufzüge: 6 m/s
Antennenanlage, Leistung bis 500kW
Stromversorgung für Café
Wasserversorgung für Café
Blitzschutzanlage
Treppe für Notfälle (Ausfall der Lifte)

Play the client and have your colleague play the contractor who asks you
questions.
Afterwards let her/him paint what he/she thinks the tower looks like!
Now compare with next slide - did your towers look similar?

How did your towers look like?

